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Summary 

We consider the flow of a fluid, contained between infinite discs rotating with constant angular velocity, when 
subjected to a small, but otherwise general asymmetric distribution of sources and sinks across the discs. It is 
shown (i) how the mass flux in the horizontal direction is equally shared by the two Ekman layers on the discs, 
(ii) how all horizontal flows depend only on the difference of the imposed velocities on the discs, and (iii) how in 
particular situations the geostrophic flow is unbounded. 

1. Introduction 

In a recent paper K_ranenberg [1] considered the flow in a rotating basin due to the 
withdrawal of fluid placed asymmetrically within the interior of the fluid. He took the sink 
to have the form of a vertical line extending from the free surface to the bottom of the 
basin, and his basic conclusion is that a vortex forms along the axis of the sink, which can 
lead to a counter rotating gyre attached to the far wall. This was a comprehensive study, 
including transient effects from the onset of the outflow for a fluid with a free surface in a 
non-linear context. 

His paper can be seen as a further stage in the understanding of source-sink flows in a 
rotating fluid. The initial work was by Barcilon [2] and Hide [3], who considered steady 
flows in a closed container where the fluid was injected a n d / o r  withdrawn from the side 
walls, and demonstrated the crucial role played by the boundary layers along the side 
walls in the transport of fluid. Kuo and Veronis [4] examined the influence of a free 
surface when the Froude number has order unity with the purpose of applying these ideas 
to an oceanographic context. Also, Johnson [5] presented a detailed theoretical investiga- 
tion of the flow from a vertical line source to a vertical line sink, set within a rotating 
cylindrical tank, to support the interpretation given by Hide for one of his experiments. 

The intention behind the present note is to briefly consider the situation when the fluid 
is added and withdrawn on horizontal rather than vertical surfaces. In this regard, 
Matsuda, Sakurai and Takeda [6] investigated source sink flows in a gas centrifuge when 
the distribution is on the top and bottom discs. The compressibility makes the calculations 
much more detailed, and physical conclusions harder to develop. Nevertheless, some 
general conclusions are given for axisymmetric situation which we redevelop here for an 
incompressible fluid. The major conclusions of the present study are brought out most 
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clearly through a particular example based on a simple linear model, and although it can 
be expected that they still have validity as the Rossby number increases, we do restrict the 
discussion here to bring out these features. 

2. General theory 

We consider the flow of viscous fluid in a frame of reference which rotates with constant 
angular velocity ~ about the vertical z-axis. The fluid, with density 0 and viscosity v, is 
constrained between infinite discs represented by z = O, h whose motion forms the basic 
solid body rotation. When (r, O, z) are the non-dimensional cylindrical co-ordinates of a 
point in the rotating frame we write the radial, aximuthal and axial velocities as d~a 
u(r, O, z), ~2a v(r, O, z) and c~a w(r, O, z) respectively, where a is a length scale, and c is 
the small Rossby number which enables the basic linearisation to be taken. When, further, 
the pressure is defined by cp~ZaZp(r, O, z), the equations of motion are 

1 1 
u , + - u + - v  o + w z = O, (2.1) 

r r 

-2v=-pr+E u~,+rU~---r2U + T U o o + U z z  % , 

1 ( 1 1 1  2 )  
2 u =  rPo+E V,r+r%---rgV+-~voo+v =+r- ~u o , (2.3) 

( 1 1 ) 
0 = - p z + E  Wrr"}-TWr-lr'TWoo-]- Wzz , (2.4) 

E is the Ekman number for the flow, with E = v/f~a 2, and is taken to be small in all which 
follows. 

There is a combination of imposed inflow and outflow across the surfaces of the two 
discs, with the restriction that there is no net increase of mass. Hence we impose the 
boundary conditions 

u=v=Oonz=O,h ,  (2.5) 

w=E1/2Wo(r, O) o n z  = O, w=gl/2Wl(r  , O) o n z  = h, (2.6) 

where 

f o C rdr WodO = rdr WldO. 
0 -qr 0 " -qr 

The equations (2.1)-(2.4) cannot be solved generally for distributions W0, W1, but 
asymptotic methods for E << 1 can describe the basic features. To begin, we summarize 
the analysis for the Ekman layers, there is only a slight modification of previous work (cf. 
Jacobs [8], Kuo and Veronis [4]). 
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When z = E1/2~, we write w = E1/2W(r, O, ~) for the layer on the lower disc to provide 
the equations 

1 1 
ur+--u+--Vo+ We=0  , - 2 v = - p ~ + u f ~ ,  

r r 

1 
2u = r p  o + vf:, pf = O, 

the last equation showing that p - p ( r ,  O) throughout the fluid. The solutions for u and v 
which are zero on the disc are given by 

2u = - p r  e - ;  sin ~ - r-lpo(1 - e -~ cos ~), (2.7a) 

2v = P r O  - e-¢ cos ~) - r-lpe e -~ sin ~. (2.7b) 

The continuity equation then shows 

W =  WI - ¼ V 2p e-~(cos ~" + sin ~), ~" = 0(1) ,  (2.8) 

where Wi(r, O) is the interior axial velocity. For the Ekman layer on the upper disc, where 
we define h - z = E1/2~, the expressions (2.7) are changed only by replacing ~ by ~, and 
(2.8) becomes 

W =  W1 + ¼ V2p e-~(cos ~ + sin f ) ,  ~ = 0(1) .  (2.9) 

Consequently, when W = W 0 on z = O, W =  W 1 on z = h, it follows that 

W 1 = ½(W o + W1) , (2.10) 

V2p = 2(W 1 - Wo). (2.11) 

Although these results appear to be unsurprising, a number of conclusions can be drawn 
immediately from them; the Poisson equation fo rp ( r ,  0) is a generalization of the Laplace 
equation given by Greenspan [7] when there is no flow imposed across the horizontal 
discs. 

The equation for p depends only on the difference between W 0 and Wa, and so the 
addition of an inflow over any finite domain of one disc, plus an equal outflow over the 
same domain of the other disc, will have no effect on the horizontal flow in the interior or 
in the Ekman layers. The extra axial velocity on the discs will just be added to the axial 
velocity W I through (2.10), and be present in both the Ekman layers from (2.8), (2.9). 
Consequently, there is an insensitivity of the horizontal flow to the precise conditions on 
the discs. 

Secondly, the flow parallel to the discs in each of the Ekman layers is identical. Now 
there is no horizontal transport of mass of O ( E  1/2) in the geostrophic interior, with the 
flux in this direction taking place predominantly within the Ekman layers. Hence, this 
transport must be equally balanced between the two layers to O(E1/2), even in situations 
where both inflow and outflow is from only one of the discs. 
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Finally, in any domain in the r, 0 plane where V 2p = 0 we can introduce the harmonic 
function s(r, O) conjugate to p(r, O) by 

sr = -r- lpo = 2 u I ,  r-lso =Pr = 2vl, (2.12) 

where ui, u I are the interior velocities. From potential theory, the curves s = constant are 
orthogonal to those where p = constant, and so the mass flux within the Ekman layers 
takes place along the set of curves orthogonal to those where p(r, 0 ) =  constant. 

For any particular situation, to gain a description of the interior flow, and therefore of 
the Ekman layer behaviour, the mathematical problem reduces to solving the Poisson 
equation (2.11) subject to certain boundary conditions. Here we take both the inflow and 
outflow to be defined in such a way that the right hand side of (2.11) is nonzero in some 
finite domain D (possibly made up of distinct, connected sub-domains D k), and be zero 
elsewhere. Along the boundary of each sub-domain D~ there will, in general, be both 
one-third and one-quarter Stewartson layers, but the behaviour within these is not 
sufficiently different from that described by Greenspan [7] to detail here. No vertical 
O(E 1/2) transport takes place in these Stewartson layers; this is concentrated within the 
columns D. Now p(r, O) is effectively a stream function for the interior flow, and so it 
follows that p = constant forms the condition on the boundaries of D k for the solution of 
the Poisson equation. Further, continuing to follow Greenspan's arguments, it is seen from 
the fact that there is no mass flux across these Stewartson layers, that the line integral 

fck~n dS = O, 

where O/On represents the normal derivative for points on the curve C~, which is the 
closed curve boundary of the domain Dk; when the flow is axisymmetric this condition 
requires that the angular velocity v is continuous across the curve C k. 

3. Particular example 

We present just one example here which, it is believed, fully illustrates the results of the 
previous section. Solving the Poisson equation in particular domains is a straightforward 
mathematical exercise, but even this can be avoided by the intuitive reader on the basis of 
the following simple, illustrative example. 

We set 

{ -2 /c~  inside D o 1 
W°= 0 elsewhere) '  

{ -2 /c~  insideD 1 } (3.1) 
WI= 0 elsewhere ' 

where D o and D 1 a r e  two circles, with radii c o and c I respectively, which have no points in 
common. Inside the domain D o the interior flow will satisfy the Poisson equation 
V 2p = 4/C0 2, with p = constant on the boundary; consequently there is relative solid body 
rotation with the angular velocity difference given by 1/c 2. A similar conclusion follows 
for the behaviour inside D 1. Outside these circular columns the flow is irrotational, and 
the streamlines p = constant form a system of coaxial circles which include (and are 
defined by) D o and D1; there is a radical axis which divides the interior into two distinct 
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Figure 1. Full lines represent the streamlines for the geostrophic flow. Dotted lines represent the direction of 
mass transport in the Ekman layers. 

regions. The orthogonal trajectories represent the streamlines for the flow of mass within 
the Ekman layers; these curves are also circles which pass through the radical points of the 
first system. Exactly half the fluid is transmitted through each of the Ekman layers on the 
separate discs. The streamlines are sketched in Fig. 1. 

The interesting feature to notice here is that the geostrophic flow induced in the interior 
is not confined, even though the distribution of sources and sinks is bounded; this type of 
behaviour has not been observed before and does not seem to be possible in axisymmetric 
situations. The velocities decay as O(r -2) when r ~ ~ .  

We can extend the above results to the situation where W 0 = 0 everywhere, plus 
W 1 = 2 / c  2 inside Do, W 1 = - 2 / c  2 inside D], and W 1 = 0 elsewhere. These conditions are 
the same as (3.1) except for the addition of the constant velocity 2 / c  2 throughout the 
column D o . The mass is now both injected and extracted on the upper disc alone. 
However, there is no change in the flow in any horizontal plane, and the streamlines of 
Fig. 1 are still valid; half the mass flux still takes place in the Ekman layer on the lower 
disc. 

To conclude, we note that the interior flow described by Kranenberg [1] can be 
reproduced by a particular distribution of sources and sinks on the discs, as predicted 
from his experimental results. If the conditions (3.1) are set, except that now the circle D o 
is completely contained within D1, then the behaviour described by Kranenberg follows in 
the limit as c o ~ 0. The more general problem, with finite Co, can be solved using bipolar 
co-ordinates for the domain between D O and D1, but the details take away from the basic 
purpose of the present note and are not given here. 
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